
Satake superdiagrams, real forms and Iwasawa decomposition of classical Lie superalgebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 767

(http://iopscience.iop.org/0305-4470/31/2/031)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 767–778. Printed in the UK PII: S0305-4470(98)86646-8

Satake superdiagrams, real forms and Iwasawa
decomposition of classical Lie superalgebras

K C Pati and D Parashar
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India

Received 6 August 1997

Abstract. Satake superdiagrams corresponding to the Lie superalgebrasA(m, n), B(m, n),
B(o, n), C(n), D(m, n) together with the exceptional onesD(2, 1, α), F (4),G(3) are
constructed from their Dynkin diagrams with a view to determine the real forms of these
superalgebras. The involutive automorphisms are computed from a modified formula to account
for all pertinent cases in a consistent way. This mechanism is also used to furnish a general
treatment of the Iwasawa and Langlands decompositions of these superalgebras. In particular,
we compute these decompositions forD(2, 1, α) for illustrational purposes and obtain the
corresponding induced representations using the method of Schmidt construction.

1. Introduction

The main motivation to undertake this investigation stems from the incredible power and
mathematical sophistication of the techniques of supersymmetry in the realms of particle
physics and field theory whereby the bosons and fermions are treated in a unified manner.
Since the study of Lie groups and their associated Lie algebras constitute a concrete
realization of the tremendous proliferation of the various symmetry transformations, it is
only natural to visualize, evaluate and interpret the possible consequences of a suitable
supersymmetric extension of these algebras. The constructs so generated are the Lie
superalgebras [1–3] or graded Lie algebraic structures which can be readily transcribed
for the purpose of application to both bosonic and fermionic sectors in a systematic and
consistent framework. It is worth recalling that the essential elements entering one of the
straightforward methods for the study of ordinary Lie algebras comprise the root system (up
to a transformation of the Weyl group) and the Dynkin diagrams which in turn can be used
to construct the corresponding Satake diagrams [4–7] from which to evaluate the involutive
root automorphisms. The evaluation of root automorphisms for the Lie superalgebras is
achieved in exactly the same manner as for the ordinary Lie algebras, by constructing the
Satake superdiagrams from the corresponding Dynkin diagrams for these superalgebras.

In this paper we address the basic or contragradient superalgebras [1, 2], namely, the
A(m, n), B(m, n), B(o, n), C(n),D(m, n) and the exceptional Lie superalgebrasF(4),G(3)
as well asD(2, 1, α) which evidently are closely linked to the usual simple Lie algebras.
The bosonic and fermionic sectors are, however, characterized by the even and odd roots,
respectively. In contrast to the case of simple Lie algebras where there is only one simple
root system, the superalgebraic structures are, in general, endowed with several unequivalent
simple root systems. The involutive automorphisms of these algebras are obtained from
Satake superdiagrams with a modified formula and their real forms are determined explicitly
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[8–10]. Although the forms are real, their representations can, in general, be real, antireal
and areal. We also carry out the Iwasawa [11] and Langlands [12] decompositions of the
exceptional Lie superalgebraD(2, 1, α) within this scheme.

This paper is organized as follows. In section 2, we give a brief summary of the
classification of classical Lie superalgebras along with their root systems and Dynkin
diagrams, displayed in table 1. Section 3 contains an outline of the essential steps for the
construction of Satake superdiagrams from the Dynkin diagrams of the Lie superalgebras,
which are listed in table 2. Section 4 is devoted to a general formulation of the Iwasawa
and Langlands decompositions of these superalgebras following the procedure analogous
to that of ordinary Lie algebras. As an illustration, in section 5 we consider the Satake
superdiagrams ofD(2, 1, α) corresponding to its three distinct real forms and explicitly
construct the Iwasawa and Langlands decompositions ofD(2, 1, α). It is shown that this
gives rise to parabolic subalgebras which serve as a basis for obtaining the corresponding
induced representation through Schmidt [13] construction. Finally, we discuss the results
and conclusions in section 6.

2. Root systems and Dynkin diagrams of Lie superalgebras

The Lie bracket in a Lie superalgebraG = G0⊕ G1 is defined by the equality

[a, b] = ab − (−1)|a‖b|ba ∀a, b ∈ G (2.1)

where |a| is the degree ofa, being 0 for the elements of the subalgebraG0 and 1 for the
elements ofG1. Moreover, we have globally

[G0,G0] ⊂ G0 [G0,G1] ⊂ G1 [G1,G1] ⊂ G0. (2.2)

Let H be a Cartan subalgebra ofG0. A root α of G(α 6= 0) will be an elementα ∈ H ∗, the
dual ofH , such that

Gα = {eα ∈ G|[eα, h] = α(h)eα, h ∈ H }. (2.3)

A root α is called even ifG0 ∩ Gα 6= 0 and odd ifG1 ∩ Gα 6= 0. Different families of basic
classical Lie superalgebras can now be introduced along with their root systems;10 and
11 being the set of even and odd roots respectively. These are:

2.1. Classical Lie superalgebras

(1) A(m, n) = sl(m+ 1, n+ 1).
This is a type 1 Lie superalgebra defined by

A(m, n) = A−1(m, n)+ A0(m, n)+ A1(m, n) (2.4)

in which the ordinary Lie algebraA0(m, n) is reducible and is given by

A0(m, n) = Am ⊕ An ⊕K (2.5)

whereK is a real number corresponding to the Abelian groupU(1). The root system of
A(m, n) is given in terms ofε1, . . . , εm+1, δ1, . . . , δn+1 as

10 = {εi − εj , δi − δj }
11 = {±(εi − δi)}.

(2.6)

(2) B(m, n) = osp(2m+ 1, 2n).
This is a type 2 Lie superalgebra defined by

B(m, n) = B0(m, n)+ B1(m, n) (2.7)
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where the ordinary Lie algebraB0(m, n) is given by

B0(m, n) = Bm ⊕ Cn. (2.8)

The root system is given by

10 = {±εi ± εj ,±2δi,±εi,±δi ± δj } i 6= j
11 = {±δi,±εi ± δj }.

(2.9)

(3) B(o, n) = osp(1, 2n).
This is also a type 2 Lie superalgebra defined by

B(o, n) = B0(o, n)⊕ B1(o, n) (2.10)

where

B0(o, n) = Cn. (2.11)

The root system is given by

10 = {±δi ± δj ,±2δi} i 6= j
11 = {±δi}.

(2.12)

(4) C(n) = osp(2n, 2).
This again is a type 2 Lie superalgebra defined by

C(n) = C−1(n)+ C0(n)+ C1(n) (2.13)

where

C0(n) = Cn +D1. (2.14)

The root system is given in terms ofε1, δ1, . . . , δn−1 as

10 = {±2δi,±δi ± δj }
1i = {±ε1± δi}.

(2.15)

(5) D(m, n) = osp(2m, 2n).
This is a type 2 Lie superalgebra defined by

D(m, n) = D0(m, n)+D1(m, n) (2.16)

where

D0(m, n) = Dm + Cn. (2.17)

The root system is given by

10 = {±εi ± εj ,±2δi,±δi ± δj } i 6= j
11 = {±εi ± δj }.

(2.18)

2.2. Exceptional Lie superalgebras

(6) D(2, 1, α) : α ∈ k∗/{0,−1}.
This one-parameter family of 17-dimensional Lie superalgebra is given by

D(2, 1, α) = D0(2, 1, α)+D1(2, 1, α) (2.19)

where

D0(2, 1, α) = A1+ A1+ A1. (2.20)
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The roots are expressed in terms of linear functionsε1, ε2, ε3 as

10 = {±2εi}
11 = {±ε1± ε2± ε3}.

(2.21)

(7) F(4).
This is a 40-dimensional Lie superalgebra defined by

F(4) = F0(4)+ F1(4) (2.22)

where

F0(4) = A1+ B3. (2.23)

The roots are expressed in terms ofε1, ε2, ε3 corresponding toB3 and δ corresponding to
A1 as

10 = {±δ,±εi ± εj ,±εi}
11 = { 12(±ε1± ε2± ε2± δ)}.

(2.24)

(8) G(3).
This is a 31-dimensional Lie superalgebra defined by

G(3) = G0(3)+G1(3) (2.25)

where

G0(3) = A1+G2. (2.26)

The roots are expressed in terms ofδ andε1, ε2, ε3 with the conditionε1+ ε2+ ε3 = 0, as

10 = {±2δ, εi − εj ,±εi}
11 = {±δ,±εi ± δ}.

(2.27)

As for the ordinary Lie algebras, here also we can define a system of simple roots
π = {α1, . . . , αr} ⊆ 1 if every other root of Lie superalgebra can be obtained as a linear
combination of these systems of simple roots. Now it is always possible to define ar × r
Cartan matrixA = (aij ) associated with a set of simple roots with the following conditions:

[e±αi , hj ] = ±aij e±αj
[eαi , e−αj ] = δijhj
[hi, hj ] = 0

(2.28)

the h1, h2, . . . , hr generating the corresponding Cartan subalgebraH . The aij are the
elements of the Cartan matrix which can be chosen to be symmetric and defined as follows

aij = (αi, αj ). (2.29)

Such a Cartan matrix can be obtained [2] from a non-symmetric Cartan matrix by multiplying
a diagonal matrix corresponding to the particular superalgebra.

We now associate to each simple root system ofG, a Dynkin diagram according to the
following rules.

(i) To each simplebosnic rootαi we associate an open circle, to each simplefermionic
root αi we associate a grey circle,⊗, if aii = 0 and a full circle• if aii 6= 0.

(ii) The ith andj th circles will be joined byηij lines with

ηij =



2|aij |
min(|aii |, |ajj |) if aii · ajj 6= 0

2
|aij |

minakk 6= 0|akk| if aii 6= 0, ajj = 0

|aij | if aii = ajj = 0.

(2.30)
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Table 1. Dynkin diagrams corresponding to the basic classical Lie superalgebras.

(iii) We add an arrow on the lines connecting theith andj th circles when|ηij | > 1,
pointing from i to j if aii · ajj 6= 0 and|ajj | or if aii = 0, ajj 6= 0, |ajj | < 2 and pointing
from j to i if aii = 0, ajj 6= 0, |ajj | > 2.

We note that for a given Lie superalgebra there may be associated a number of non-
equivalent simple root systems. Therefore, not only one Dynkin diagram but a number of
non-equivalent Dynkin diagrams are possible. In this paper, we choose the Dynkin diagrams
related to a special simple root system called the distinguished root system which contains
the smallest number of fermionic roots. These are illustrated in table 1.

3. Construction of Satake superdiagrams

As an analogue of symmetric space, we consider the homogeneous supermanifoldG/Gσ ,
whereG is a real Lie superalgebra andσ is an involutive automorphism ofG. This is called
symmetric superspace [9, 14]. In this case, however, we have a weak analogue of the notion
of compactness, because there are no real simple Lie superalgebras for which the restriction
of the invariant metric to the even part has a definite sign. A symmetric superspace with
compact base will be called compact.

Let M be a compact semisimple symmetric superspace,G its supergroup of motion,K
the isotropy group of the base point,A a maximal torus inM andT ⊃ Q(A) a maximal
torus inG. LetR be the root system ofG relative toT andR− the root system ofM relative
to A. For α ∈ R, let ᾱ = {(−1)|α|α − σ(α)}, whereσ is the involutive automorphism of
α. ThenR− = {ᾱ|ᾱ 6= 0, α ∈ R}. Also let R0 = {αεR|ᾱ = 0}. Further, letB− (resp.B)
denote the basis ofR− (resp.R), thenB0 will be a basis ofR0, whereB0 = B ∩ R0.

Proposition. Let B/B0 = {α1, . . . , αr} andB0 = {β1, . . . , βS}, then

−σ(αi) = απ(i) + (−1)|αi |
∑

ηilβl (3.1)
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where π is an involutive permutation of{1, 2, . . . , r} and (−1)|αi |ηil are non-negative
integers.

Proof. Let

−σ(αi) = (−1)|α|
∑

Cijαj . (3.2)

As all types of automorphisms must respect grading, i.e.|αi | = |α|, so we have

−σ(αi) = (−1)|αi |
r∑

j=1

mijαj + (−1)|αi |
S∑
l=1

ηilβl. (3.3)

Now applyingαi →−σ(αi) to this identity, we obtain

(−σ)2(αi) = (−1)|αl |
∑

mij (−1)|αj |
∑

mjkαk

+ (−1)|αi |
∑

((−1)|αj |mijηjl − (−1)|βl ηil)βl. (3.4)

Sinceσ is involutive, the left-hand side of the above equation is equal toαi and we have∑
(−1)|αi |mij (−1)|αj |mjk = δik. (3.5)

So, the terms(−1)|αj |mij can be considered as the elements of the permutation matrix and
we finally obtain the desired result,

−σ(αi) = απ(i) + (−1)|αi |
∑

ηilβl.

Now B− = {ᾱ|α ∈ B/B0}, and we should note that

σ(βi) = (−1)|βi |βi with α + σ(a) ∈ R ∀α ∈ R.
We can now associate withB its Satake superdiagrams. In the Dynkin diagram ofB

denote the rootsαi by usual open, grey and full circles and the rootsβl by full circles•. We should note that this full circle is different from the full circle root associated with
a non-degenerate odd root such as inB(o, n), for instance. Ifπ(i) = k, then it will be
indicated byxy.

Satake superdiagrams determine the involutionσ of R uniquely. However, in some
cases when the grey root is blackened, we cannot solve forηil uniquely. We should therefore
avoid these types of Satake superdiagrams. A simple Lie superalgebra overR is determined
up to isomorphism by its Satake superdiagrams. In other words, Satake superdiagrams will
correspond to all possible real forms of Lie superalgebras. If we restrict ourselves to those
real Lie superalgebras for which the representation is real, then we obtain exactly the same
real forms of Lie superalgebras as given by Parker [8]. It is worth mentioning a theorem due
to him in this context. Up to isomorphism, the real forms of the classical Lie superalgebras
are uniquely determined by the real formGoc of the Lie subalgebraG0. These are listed in
table 2. �

4. Iwasawa and Langlands decompositions of Lie superalgebras

We now extend the notion of direct determination of Iwasawa [11] and Langlands [12]
decompositions of Lie algebras to the case of Lie superalgebras. LetG̃ be a real Lie
superalgebra generated by its compact real formG̃k by an involutive automorphism defined
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Table 2. Satake superdiagrams corresponding to the real forms of basic classical Lie
superalgebras.

with respect to the Cartan subalgebrah̃ of G̃c, G̃C being the complexification of̃G. The
following commutation relations are satisfied by the elements ofG̃c

[eα, h] = α(h)eα h ∈ h̃ α ∈ 1

[eα, eβ ] =
{
Nαβeα+β if α + β is a root

0 otherwise

[eα, e−α] = hα hα ∈ h̃.

(4.1)

Here1 denotes the set of roots of̃GC with respect toh̃ and the Killing form is defined as
B(eα, e−α) = −1, a(h) = B(h, hα). The compact real form̃Gk may be taken to consist of
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Table 2. (Continued)

ihα, α = α1, α2, . . . , αr , wherer is the rank ofG and (eα + e−α), i(eα − e−α)∀α. Let k̃ be
the maximal compact subalgebra ofG̃ defined such thata ∈ k̃ iff a ∈ G̃C andσa = a. Let
p̃ be the subspace of̃G such thata ∈ p̃ iff a ∈ G̃C andσa = −a. Thus k̃ and p̃ are given
by

k̃ = {ihα, α = α1, α2, . . . , αr and(eα + e−α), i(eα − e−α)∀α| expα(h) = 1} (4.2)

p̃ = {i(eα + e−α), (eα − e−α)∀α| expα(h) = −1}. (4.3)

Let ã be the maximal Abelian subalgebra ofp̃ with dimension|m1| andm̃ be the centralizer
of ã in k̃. Complexification ofã ⊕ m̃ gives a Cartan subalgebrãh′ of G̃C with basis
{H ′1, H ′2, . . . , H ′r}. There exists an inner automorphismV : h̃′ → h̃, i.e.

Hj = VH ′j whereV = πανα a ∈ 1. (4.4)

Let 1+ be the set of positive roots, then

hα =
r∑

j=1

bj (α)Hj . (4.5)

Thusα ∈ 1+ iff bj (α) > 0 wherej is the least index such thatbj (α) 6= 0. The positive
roots can again be divided into the following classes:

(i) 1++ = {α|α ∈ 1+, α(h) 6= α(V σV −1h) ∀h ∈ h̃}
(ii) 1+− = {α|α ∈ 1+, α(h) = α(V σV −1h) ∀h ∈ h̃}.

(4.6)
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Let the subalgebrã̃n be spanned by the elementsV −1eα for α ∈ 1++ and ñ = ˜̃n ∩ G̃,
where ˜̃n and ñ are the nilpotent subalgebras ofG̃C and G̃, respectively. Thus, the Iwasawa
decomposition ofG̃ is given by

G̃ = k̃ ⊕ ã ⊕ ñ. (4.7)

A minimal parabolic subalgebra is defined to be any subalgebra that is conjugate to

p̃1 = m̃⊕ ã ⊕ ñ. (4.8)

Any subalgebra ofG̃ containing the minimal parabolic subalgebra is a general parabolic
subalgebra. There exist 2|m1| classes of parabolic subalgebras ofG̃ and in each such
class there is a standard parabolic subalgebra which can be obtained through the following
prescription. Let6 be the set of roots for̃a andψ be the set of positive roots in6. Let θ
denote the subset ofψ and〈θ〉 the set of roots in6 which arises as a linear combination of
roots inθ . Define〈θ〉± = 6±∩〈θ〉, where6+ and6− denote the positive and negative roots
in 6, respectively. Letη+(θ), η−(θ) andη(θ) denote the subspaces ofã corresponding to
〈θ〉+, 〈θ〉− and6± − 〈θ〉±, respectively. We now define

aθ = {a ∈ ã|λ(a) = 0 ∀λ ∈ θ} (4.9)

and a(θ) to be the orthogonal complement ofaθ in ã with respect to the Cartan–Killing
form, then

pθ = mθ ⊕ aθ ⊕ ηθ (4.10)

is a parabolic subalgebra ofG, where

mθ = m̃⊕ η+(θ)⊕ η−(θ)⊕ a(θ). (4.11)

A real Cartan subalgebrãh is said to beσ invariant if

h̃ = (h̃ ∩ k̃)⊕ (h̃ ∩ p̃). (4.12)

A parabolic subalgebrapθ is said to be cuspidal if there exists aσ invariant real Cartan
subalgebrãh such that

aθ = h̃ ∩ p̃. (4.13)

This shows that the minimal parabolic subalgebra is cuspidal.

5. Iwasawa and Langlands decompositions ofD(2, 1,α)

As an illustrative example, we consider the involutive automorphism ofD(2, 1, α)
determined by any one of the three Satake superdiagrams, say (ii), from table 2. The
Cartan matrix ofD(2, 1, α) is given by

C =
[ 2 −1 0
−1 0 −α
0 −α 2α

]
. (5.1)

From the Satake superdiagram we see that the basic root automorphisms are given by

σ(α1) = α1

−σ(α2) = α1+ α2+ α3

σ(α3) = α3.

(5.2)

The positive roots ofD(2, 1, α) are given by

1 = {α1, α2, α3, α1+ α2, α2+ α3, α1+ α2+ α3, α1+ 2α2+ α3}. (5.3)
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The automorphisms of other roots are determined as

σ(α1+ α2) = −(α2+ α3)

σ (α1+ 2α2+ α3) = −(α1+ 2α2+ α3).
(5.4)

From equations (5.2) and (5.4), we see that

expα(h) = +1 for α1, α2, α3 andα1+ α2 (5.5)

expα(h) = −1 for α2+ α3, α1+ α2+ α3 andα1+ 2α2+ α3. (5.6)

So, forD(2, 1, α) k̃ is given by

k̃ = {ihα for α = α1, α2, α3 and(eα + e−α), i(eα − e−α) for α = α1, α2, α3, α1+ α2}
(5.7)

and p̃ is given by

p̃ = {i(eα + e−α), (eα − e−α) for α = α2+ α3, α1+ α2+ α3, α1+ 2α2+ α3}. (5.8)

We now select a maximal Abelian subalgebraã in the vector spacẽp. It is clear thatã is
one-dimensional and may be chosen to have a basis element

H ′1 = i(eα + e−α) with α = α1+ 2α2+ α3. (5.9)

HereRA = {α1 + 2α2 + α3}. Note thatm̃ is two-dimensional and its basis elements are
given by

−iH ′2 = (eα1 + e−α1)

−iH ′3 = (eα3 + e−α3).
(5.10)

HereRM = {α1, α3}. The required inner automorphismV that mapsH ′ into H is then
given by

V = παvα ∀α ∈ RA ∪ RM
wherevα = exp[ad{iaα(eα − e−α)}] and

aα = π

{8(α, α)}1/2 . (5.11)

In our case

V = vα1+2α2+α3vα1vα3. (5.12)

Applying this to the Cartan subalgebraH ′ of D(2, 1, α), we obtain

H1 = −
{

2

(α1+ 2α2+ α3, α1+ 2α2+ α3)

}1/2

hα1+2α2+α3

H2 = −
{

2

(α1, α1)

}1/2

hα1

H3 = −
{

2

(α3, α3)

}1/2

hα3.

(5.13)

With respect to this Cartan subalgebra, the set of positive roots is given by

1+ = {−α1,−α2,−α3,−(α1+ α2),−(α2+ α3),−(α1+ α2+ α3),−(α1+ 2α2+ α3)}.
(5.14)
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The sets1++ and1+− can similarly be written as

1+− = {−α1,−α3}
1++ = {−α2,−(α1+ α2),−(α2+ α3),−(α1+ α2+ α3),−(α1+ 2α2+ α3)}.

(5.15)

ForD(2, 1, α) the basis elements of˜̃n are given byV −1eα whereα ∈ 1++ and we see that
these are given by the structuresV −1e−α2, V −1e−(α1+α2), V

−1e−(α2+α3), V
−1e−(α1+α2+α3), and

V −1e−(α1+2α2+α3). These structures can be calculated explicitly by applying the properties
of inner automorphism [11]. For example, the elementV −1e−(α1+2α2+α3) is given by

V −1e−(α1+2α2+α3) = −
1

2
(eα1+2α2+α3 − e−(α1+2α2+α3))

−1

2
i

(
2

(α1+ 2α2+ α3, α1+ 2α2+ α3)

)1/2

(hα1 + 2hα2 + hα3). (5.16)

The elements of̃n can be known by considering the elements˜̃n ∩ G and a typical element
of ñ corresponding to the above structure works out to be the same as above. The required
Iwasawa decomposition now reads

D(2, 1, α) = k̃ ⊕ ã ⊕ ñ. (5.17)

There are 2|m1| classes of parabolic subalgebras, where|m1| is the dimension of̃a. For
D(2, 1, α) we see that|m1| = 1 and there will, therefore, be two parabolic subalgebras,
one being the minimal parabolic and the other the algebra itself. The minimal parabolic
subalgebra is given by

p̃1 = m̃⊕ ã ⊕ ñ (5.18)

where

m̃ = {(eα + e−α) for α = α1, α3}
α̃ = {i(eα + e−α) for α = α1+ 2α2+ α3}.

The minimal parabolic subalgebra, being the cuspidal parabolic subalgebra, leads to the
following definition of a series of representation

ρ = indGp1(σ × τ) (5.19)

whereσ ∈ M̂, τ ∈ N̂ andp1 = MAN , is the cuspidal subgroup. Note thatp1,M,A,N,G

are the groups corresponding to the algebrasp̃1, m̃, ã, ˜̃n, G̃, respectively. Asp1 is minimal
parabolic andσ = 1IM,M being Abelian,ρ is irreducible.

6. Conclusion

In conclusion, we would like to append a few remarks concerning the results obtained in
this framework. By invoking the idea of Satake superdiagrams and their associated root
systems we have obtained the real forms of the Lie superalgebras which are in complete
conformity with those of Parker [8]. To bring out the feasibility of the mechanism more
concretely, we have been able to give a general prescription for carrying out the Iwasawa and
Langlands decompositions of these superalgebras with a view to generating their induced
representations. This has been amply corroborated in the case ofD(2, 1, α), which is
considered here as an illustrative example to demonstrate the efficacy of the method of
construction of its Iwasawa and Langlands decompositions.

The results presented in this paper owe their genesis to the relative simplicity and
elegance of the techniques of Satake superdiagrams corresponding to the particular Lie
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superalgebras considered here; the involutive automorphisms having been obtained from
a modified formula. The treatment is general enough to be applicable to a variety of
problems. The internal consistency and power of prediction of this approach constitute
important elements offering considerable temptation to seek its applications in domains
hitherto unexplored. It must, however, be emphasized that the intrinsic simplicity of the
Satake superdiagram technique cannot be construed to mean that the mathematical rigour
has been sacrificed. This is clearly an alternative mechanism which is no less profound
than the other conventional formalisms. Its added advantage, however, lies in its versatility
coupled with easy and unambiguous applicability.
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